TVAE: Triplet-Based Variational Autoencoder using Metric Learning

نویسندگان

  • Haque Ishfaq
  • Assaf Hoogi
  • Daniel Rubin
چکیده

Deep metric learning has been demonstrated to be highly effective in learning semantic representation and encoding information that can be used to measure data similarity, by relying on the embedding learned from metric learning. At the same time, variational autoencoder (VAE) has widely been used to approximate inference and proved to have a good performance for directed probabilistic models. However, for traditional VAE, the data label or feature information are intractable. Similarly, traditional representation learning approaches fail to represent many salient aspects of the data. In this project, we propose a novel integrated framework to learn latent embedding in VAE by incorporating deep metric learning. The features are learned by optimizing a triplet loss on the mean vectors of VAE in conjunction with standard evidence lower bound (ELBO) of VAE. This approach, which we call Triplet based Variational Autoencoder (TVAE), allows us to capture more fine-grained information in the latent embedding. Our model is tested on MNIST data set and achieves a high triplet accuracy of 95.60% while the traditional VAE (Kingma & Welling, 2013) achieves triplet accuracy of 75.08%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Images with Perceptual Similarity Metrics based on Deep Networks

Image-generating machine learning models are typically trained with loss functions based on distance in the image space. This often leads to over-smoothed results. We propose a class of loss functions, which we call deep perceptual similarity metrics (DeePSiM), that mitigate this problem. Instead of computing distances in the image space, we compute distances between image features extracted by...

متن کامل

CS 224W Project Final Report: Learning Fair Graph Representations

In this paper we present the Variational Fair Graph Autoencoder (VFGAE) as a model to learn feature representations on graphs that are invariant to a specified nuisance variable s. This model is brings together previous work on the Variational Graph Autoencoder proposed by Kipf and Welling, and the Variational Fair Autoencoder proposed by Louizos et al. To take into account the graph structure,...

متن کامل

Variational Autoencoder for Semi-Supervised Text Classification

Although semi-supervised variational autoencoder (SemiVAE) works in image classification task, it fails in text classification task if using vanilla LSTM as its decoder. From a perspective of reinforcement learning, it is verified that the decoder’s capability to distinguish between different categorical labels is essential. Therefore, Semi-supervised Sequential Variational Autoencoder (SSVAE) ...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Variational Autoencoder based Anomaly Detection using Reconstruction Probability

We propose an anomaly detection method using the reconstruction probability from the variational autoencoder. The reconstruction probability is a probabilistic measure that takes into account the variability of the distribution of variables. The reconstruction probability has a theoretical background making it a more principled and objective anomaly score than the reconstruction error, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04403  شماره 

صفحات  -

تاریخ انتشار 2018